Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
New Phytol ; 242(1): 33-48, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361269

RESUMO

Asteraceae represent one of the largest and most diverse families of plants. The evolutionary success of this family has largely been contributed to their unique inflorescences, capitula that mimic solitary flowers but are typically aggregates of multiple florets. Here, we summarize the recent molecular and genetic level studies that have promoted our understanding of the development and evolution of capitula. We focus on new results on patterning of the enlarged meristem resulting in the iconic phyllotactic arrangement of florets in Fibonacci numbers of spirals. We also summarize the current understanding of the genetic networks regulating the characteristic reproductive traits in the family such as floral dimorphism and differentiation of highly specialized floral organs. So far, developmental studies in Asteraceae are still limited to a very narrow selection of model species. Along with the recent advancements in genomics and phylogenomics, Asteraceae and its relatives provide an outstanding model clade for extended evo-devo studies to exploit the morphological diversity and the underlying molecular networks and to translate this knowledge to the breeding of the key crops in the family.


Assuntos
Asteraceae , Asteraceae/genética , Melhoramento Vegetal , Flores/fisiologia , Inflorescência/anatomia & histologia , Filogenia
2.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407464

RESUMO

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Assuntos
Hordeum , Feixe Vascular de Plantas , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Transporte Biológico , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia
3.
Am J Bot ; 109(5): 746-767, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35619567

RESUMO

PREMISE: The inflorescences of Solanaceae are unique and complex, which has led to long-standing disputes over floral symmetry mainly due to different interpretations of the cyme-like inflorescence structure. The main disagreements have been over how the phyllomes associated with the flower were arranged relative to the inflorescence axis especially during early flower initiation. METHODS: Here we investigated the evolution of inflorescences in Solanaceae by analyzing inflorescence structure in the context of phylogeny using ancestral state reconstruction (ASR) to determine the evolutionary transitions between loosely arranged and tightly clustered inflorescences and between monochasial-like and dichasial-like cymes. We also reconstructed two- and three-dimensional models for 12 solanaceous species that represent both inflorescence and phylogenetic diversity in the family. RESULTS: Our results indicate that the most recent common ancestor of Solanaceae had a loosely arranged and monochasial-like cyme, while tightly clustered inflorescences and dichasial-like cymes were derived. Compared to the known process of scorpioid cyme evolution, Solanaceae achieved their scorpioid cyme-like inflorescences through a previously undescribed way. Along the pedicel, the two flower-preceding prophylls are not in the typical transverse position of dicotyledonous plants; they frequently have axillary buds, and the main inflorescence axis continues in a sympodial fashion. As a result, the plane of symmetry of the flower is 36° from the median, and the inflorescence axis and the two flower-preceding prophylls are symmetrically located along that plane. CONCLUSIONS: A better understanding of the morphological evolution of solanaceous inflorescence structure helped clarify the floral symmetry of Solanaceae.


Assuntos
Magnoliopsida , Solanaceae , Flores/anatomia & histologia , Inflorescência/anatomia & histologia , Filogenia , Solanaceae/genética
4.
BMC Plant Biol ; 22(1): 127, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303806

RESUMO

BACKGROUND: Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (Zea mays) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to Unbranched3. However, the regulatory pathway of gif1 in ear meristems is relatively unknown. RESULT: In this study, we found that loss-of-function gif1 mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene RAMOSA2 (RA2) and CLAVATA signaling-related gene CLV3/ENDOSPERM SURROUNDING REGION (ESR) 4a (CLE4a) were directly bound and regulated by GIF1 in the ear inflorescence. CONCLUSIONS: Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/metabolismo , Transcriptoma , Zea mays/genética , Sequenciamento de Cromatina por Imunoprecipitação , Expressão Gênica , Fusão Gênica , Genes Reporter , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Mutação com Perda de Função , Meristema/anatomia & histologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento
5.
Am J Bot ; 109(3): 437-455, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112711

RESUMO

PREMISE: Pseudanthia are widespread and have long been postulated to be a key innovation responsible for some of the angiosperm radiations. The aim of our study was to analyze macroevolutionary patterns of these flower-like inflorescences and their potential correlation with diversification rates in Apiaceae subfamily Apioideae. In particular, we were interested to investigate evolvability of pseudanthia and evaluate their potential association with changes in the size of floral display. METHODS: The framework for our analyses consisted of a time-calibrated phylogeny of 1734 representatives of Apioideae and a morphological matrix of inflorescence traits encoded for 847 species. Macroevolutionary patterns in pseudanthia were inferred using Markov models of discrete character evolution and stochastic character mapping, and a principal component analysis was used to visualize correlations in inflorescence architecture. The interdependence between net diversification rates and the occurrence of pseudocorollas was analyzed with trait-independent and trait-dependent approaches. RESULTS: Pseudanthia evolved in 10 major clades of Apioideae with at least 36 independent origins and 46 reversals. The morphospace analysis recovered differences in color and compactness between floral and hyperfloral pseudanthia. A correlation between pseudocorollas and size of inflorescence was also strongly supported. Contrary to our predictions, pseudanthia are not responsible for variation in diversification rates identified in this subfamily. CONCLUSIONS: Our results suggest that pseudocorollas evolve as an answer to the trade-off between enlargement of floral display and costs associated with production of additional flowers. The high evolvability and architectural differences in apioid pseudanthia may be explained on the basis of adaptive wandering and evolutionary developmental biology.


Assuntos
Apiaceae , Magnoliopsida , Evolução Biológica , Flores/anatomia & histologia , Flores/genética , Inflorescência/anatomia & histologia , Filogenia
6.
Science ; 373(6551): 192-197, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244409

RESUMO

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Brassica/anatomia & histologia , Brassica/genética , Redes Reguladoras de Genes , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Fractais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
7.
Nat Plants ; 7(8): 1093-1107, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183784

RESUMO

Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.


Assuntos
Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Temperatura Alta , Inflorescência/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Austrália , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Inflorescência/anatomia & histologia , Inflorescência/genética , Fenótipo
8.
Plant Cell ; 33(8): 2562-2582, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34015121

RESUMO

The accuracy of trait measurements greatly affects the quality of genetic analyses. During automated phenotyping, trait measurement errors, i.e. differences between automatically extracted trait values and ground truth, are often treated as random effects that can be controlled by increasing population sizes and/or replication number. In contrast, there is some evidence that trait measurement errors may be partially under genetic control. Consistent with this hypothesis, we observed substantial nonrandom, genetic contributions to trait measurement errors for five maize (Zea mays) tassel traits collected using an image-based phenotyping platform. The phenotyping accuracy varied according to whether a tassel exhibited "open" versus. "closed" branching architecture, which is itself under genetic control. Trait-associated SNPs (TASs) identified via genome-wide association studies (GWASs) conducted on five tassel traits that had been phenotyped both manually (i.e. ground truth) and via feature extraction from images exhibit little overlap. Furthermore, identification of TASs from GWASs conducted on the differences between the two values indicated that a fraction of measurement error is under genetic control. Similar results were obtained in a sorghum (Sorghum bicolor) plant height dataset, demonstrating that trait measurement error is genetically determined in multiple species and traits. Trait measurement bias cannot be controlled by increasing population size and/or replication number.


Assuntos
Estudo de Associação Genômica Ampla , Processamento de Imagem Assistida por Computador/métodos , Locos de Características Quantitativas , Sorghum/fisiologia , Zea mays/fisiologia , Variação Genética , Genótipo , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/fisiologia , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Zea mays/anatomia & histologia , Zea mays/genética
9.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805287

RESUMO

Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.


Assuntos
Grão Comestível , Inflorescência/genética , Meristema/genética , Poaceae/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
10.
BMC Plant Biol ; 21(1): 187, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874891

RESUMO

BACKGROUND: Most orchid species have been shown to be severely pollination limited, and the factors affecting reproductive success have been widely studied. However, the factors determining the reproductive success vary from species to species. Habenaria species typically produce nectar but exhibit variable fruit set and reproductive success among species. Here, we investigated the influence of the flowering plant density, inflorescence size, breeding system, and pollinator behaviour on the reproductive success of two rewarding Habenaria species. RESULTS: Our observations indicated that Habenaria limprichtii and H. petelotii co-occur in roadside verge habitats and present overlapping flowering periods. Both species were pollination limited, although H. limprichtii produced more fruits than H. petelotii under natural conditions during the 3-year investigation. H. petelotii individuals formed distinct patches along roadsides, while nearly all H. limprichtii individuals clustered together. The bigger floral display and higher nectar sugar concentration in H. limprichtii resulted in increased attraction and visits from pollinators. Three species of effective moths pollinated for H. limprichtii, while Thinopteryx delectans (Geometridae) was the exclusive pollinator of H. petelotii. The percentage of viable seeds was significantly lower for hand geitonogamy than for hand cross-pollination in both species. However, H. limprichtii may often be geitonogamously pollinated based on the behaviours of the pollinators and viable embryo assessment. CONCLUSIONS: In anthropogenic interference habitats, the behaviours and abundance of pollinators influence the fruit set of the two studied species. The different pollinator assemblages in H. limprichtii can alleviate pollinator specificity and ensure reproductive success, whereas the more viable embryos of natural fruit seeds in H. petelotii suggested reducing geitonogamy by pollinators in the field. Our results indicate that a quantity-quality trade-off must occur between species with different breeding strategies so that they can fully exploit the existing given resources.


Assuntos
Inflorescência/anatomia & histologia , Orchidaceae/fisiologia , Polinização , Ecossistema , Orchidaceae/anatomia & histologia , Densidade Demográfica , Reprodução , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771923

RESUMO

Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants Arabidopsis and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in Gerbera hybrida We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.


Assuntos
Asteraceae/fisiologia , Inflorescência/crescimento & desenvolvimento , Organogênese Vegetal , Asteraceae/anatomia & histologia , Genes Reporter , Ácidos Indolacéticos/metabolismo , Inflorescência/anatomia & histologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
12.
Plant Physiol ; 185(1): 161-178, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631796

RESUMO

Regulation of floral transition and inflorescence development is crucial for plant reproductive success. FLOWERING LOCUS T (FT) is one of the central players in the flowering genetic regulatory network, whereas FLOWERING LOCUS D (FD), an interactor of FT and TERMINAL FLOWER 1 (TFL1), plays significant roles in both floral transition and inflorescence development. Here we show the genetic regulatory networks of floral transition and inflorescence development in Medicago truncatula by characterizing MtFTa1 and MtFDa and their genetic interactions with key inflorescence meristem (IM) regulators. Both MtFTa1 and MtFDa promote flowering; the double mutant mtfda mtfta1 does not proceed to floral transition. RNAseq analysis reveals that a broad range of genes involved in flowering regulation and flower development are up- or downregulated by MtFTa1 and/or MtFDa mutations. Furthermore, mutation of MtFDa also affects the inflorescence architecture. Genetic analyses of MtFDa, MtFTa1, MtTFL1, and MtFULc show that MtFDa is epistatic to MtFULc and MtTFL1 in controlling IM identity. Our results demonstrate that MtFTa1 and MtFDa are major flowering regulators in M. truncatula, and MtFDa is essential both in floral transition and secondary inflorescence development. The study will advance our understanding of the genetic regulation of flowering time and inflorescence development in legumes.


Assuntos
Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Variação Genética , Genótipo , Mutação , Fenótipo , Plantas Geneticamente Modificadas
13.
Plant Mol Biol ; 105(4-5): 419-434, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33231834

RESUMO

KEY MESSAGE: A novel MADS-box member SiMADS34 is essential for regulating inflorescence architecture and grain yield in Setaria italica. MADS-box transcription factors participate in regulating various developmental processes in plants. Inflorescence architecture is one of the most important agronomic traits and is closely associated with grain yield in most staple crops. Here, we isolated a panicle development mutant simads34 from a foxtail millet (Setaria italica (L.) P. Beauv.) EMS mutant library. The mutant showed significantly altered inflorescence architecture and decreased grain yield. Investigation of agronomic traits revealed increased panicle width by 16.8%, primary branch length by 10%, and number of primary branches by 30.9%, but reduced panicle length by 25.2%, and grain weight by 25.5% in simads34 compared with wild-type plants. Genetic analysis of a simads34 × SSR41 F2 population indicated that the simads34 phenotype was controlled by a recessive gene. Map-based cloning and bulked-segregant analysis sequencing demonstrated that a single G-to-A transition in the fifth intron of SiMADS34 in the mutant led to an alternative splicing event and caused an early termination codon in this causal gene. SiMADS34 mRNA was expressed in all of the tissues tested, with high expression levels at the heading and panicle development stages. Subcellular localization analysis showed that simads34 predominantly accumulated in the nucleus. Transcriptome sequencing identified 241 differentially expressed genes related to inflorescence development, cell expansion, cell division, meristem growth and peroxide stress in simads34. Notably, an SPL14-MADS34-RCN pathway was validated through both RNA-seq and qPCR tests, indicating the putative molecular mechanisms regulating inflorescence development by SiMADS34. Our study identified a novel MADS-box member in foxtail millet and provided a useful genetic resource for inflorescence architecture and grain yield research.


Assuntos
Grão Comestível/genética , Inflorescência/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Setaria (Planta)/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/classificação , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Polimorfismo de Nucleotídeo Único , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/classificação
14.
Braz. J. Pharm. Sci. (Online) ; 57: e18954, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1345456

RESUMO

The ethanolic extract of resinous sediment (EERS) of Etlingera elatior young inflorescence was examined for its anticancer effect and potential antioxidant activity. The anticancer effect of the EERS was evaluated on four human cancer cell lines, HCT 116, HT-29, Hela, and MCF-7, using the MTT assay. GC-MS analysis showed that the main components found in the EERS were nonyl cyclopropane (4.44%), 1-tetradecane (3.66%), cyclotetradecane (2.41%), cyclododecane (1.92%), and 1-decene (1.72%). The antioxidant activity was determined through different methods. High amounts of TPC and TFC in the EERS were found. Moderate antioxidant capacity of the EERS was detected by DPPH and ABTS assays, with EC50 values of 44.19 and 56.61 µg/mL and a high FRAP value of 281.79 nmol Fe+2 equivalent/mg extract. In the MTT assay, the EERS showed potent anticancer activity, with IC50 values of 19.82, 37.001, 50.49, and 53.29 µg/mL against HT-29, HCT 116, Hela, and MCF-7 tumour cell lines, respectively. Moreover, the results were comparable to or less potent than the standard reference drug, 5-fluorouracil. The results showed that the EERS of Etlingera elatior inflorescence contained a high amount of polyphenols and flavonoids, which may to the selective antiproliferative effects towards colon cancer in vitro


Assuntos
Zingiberaceae/classificação , Inflorescência/anatomia & histologia , Fluoruracila/farmacologia , Neoplasias , Antioxidantes/análise , Técnicas In Vitro/métodos , Preparações Farmacêuticas , Anticarcinógenos/efeitos adversos , Neoplasias do Colo/patologia
15.
Genesis ; 58(12): e23401, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33283401

RESUMO

The radiate pseudanthium, with actinomorphic disk flowers surrounded by showy marginal zygomorphic ray flowers, is the most common inflorescence in the Helianthus genus. In Helianthus radula, ray flower primordia are normally absent at the dorsal domain of the inner phyllaries (discoid heads) while the occurrence of radiate inflorescences is uncommon. In Helianthus spp., flower symmetry and inflorescence architecture are mainly controlled by CYCLOIDEA (CYC)-like genes but the putative role of these genes in the development of discoid inflorescences has not been investigate. Three CYC genes of H. radula with a role in ray flower identity (HrCYC2c, HrCYC2d, and HrCYC2e) were isolated. The phylogenetic analysis placed these genes within the CYC2 subclade. We identified two different alleles for the HrCYC2c gene. A mutant allele, designed HrCYC2c-m, shows a thymine to adenine transversion, which generates a TGA stop codon after a translation of 14 amino acids. We established homozygous dominant (HrCYC2c/HrCYC2c) and recessive (HrCYC2c-m/HrCYC2c-m) plants for this nonsense mutation. Inflorescences of both HrCYC2c/HrCYC2c and HrCYC2c/HrCYC2c-m plants initiated ray flowers, despite at low frequency. By contrast, plants homozygous for the mutant allele (HrCYC2c-m/HrCYC2c-m) failed at all to develop ray flowers. The results support, for the first time, a role of the HrCYC2c gene on the initiation of ray flower primordia. However, also in the two dominant phenotypes, discoid heads are the prevalent architecture suggesting that this gene is required but not sufficient to initiate ray flowers in pseudanthia. Other unknown major genes are most likely required in the shift from discoid to radiate inflorescence.


Assuntos
Helianthus/crescimento & desenvolvimento , Helianthus/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Alelos , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Helianthus/anatomia & histologia , Inflorescência/anatomia & histologia , Mutação , Fenótipo , Filogenia
16.
Plant Sci ; 296: 110516, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32539997

RESUMO

The SQUAMOSA promoter-binding protein-like (SPL) proteins play vital roles in plant growth and development in rice (Oryza sative L.) and Arabidopsis thaliana (L.) Heynh. However, few studies regarding the SPL proteins have been reported in wheat. In this study, 56 TaSPLs were clustered into eight groups according to an OsSPL phylogenetic comparison analysis. The expression patterns of TaSPLs in different tissues were analysed by RNA-seq data, and partial results were confirmed by qRT-PCR. Based on the above results, genes such as TaSPL13 and TaSPL15 may be involved in spike or seed development in wheat. Multiple genes that regulate the inflorescence architecture of rice have been identified. Additionally, studies on the genes associated with spikelet development in wheat have been reported relatively rarely. Here, TaSPL13-2B was transferred into wheat cv. Bobwhite. Compared with the wild type, the transgenic lines showed significant increases in the number of florets and grains per spike, indicating that TaSPL13-2B could influence the floret development of wheat. TaSPL13-2B was transferred into rice cv. Nipponbare, which demonstrated that TaSPL13-2B can modify panicle architecture in transgenic rice, with significant increases in panicle length, the number and length of primary branches, and the number of secondary branches.


Assuntos
Inflorescência/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Triticum/crescimento & desenvolvimento , Southern Blotting , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/genética , Inflorescência/anatomia & histologia , Oryza , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Triticum/anatomia & histologia , Triticum/genética
17.
Plant Cell Physiol ; 61(8): 1427-1437, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186727

RESUMO

Maize inflorescence is a complex phenotype that involves the physical and developmental interplay of multiple traits. Given the evidence that genes could pleiotropically contribute to several of these traits, we used publicly available maize data to assess the ability of multivariate genome-wide association study (GWAS) approaches to identify pleiotropic quantitative trait loci (pQTL). Our analysis of 23 publicly available inflorescence and leaf-related traits in a diversity panel of n = 281 maize lines genotyped with 376,336 markers revealed that the two multivariate GWAS approaches we tested were capable of identifying pQTL in genomic regions coinciding with similar associations found in previous studies. We then conducted a parallel simulation study on the same individuals, where it was shown that multivariate GWAS approaches yielded a higher true-positive quantitative trait nucleotide (QTN) detection rate than comparable univariate approaches for all evaluated simulation settings except for when the correlated simulated traits had a heritability of 0.9. We therefore conclude that the implementation of state-of-the-art multivariate GWAS approaches is a useful tool for dissecting pleiotropy and their more widespread implementation could facilitate the discovery of genes and other biological mechanisms underlying maize inflorescence.


Assuntos
Loci Gênicos/genética , Inflorescência/genética , Folhas de Planta/genética , Zea mays/genética , Estudo de Associação Genômica Ampla , Inflorescência/anatomia & histologia , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Zea mays/anatomia & histologia
18.
J Exp Bot ; 70(21): 6261-6276, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504758

RESUMO

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) and computational approaches (topological and geometric data analysis and structural simulations) to comprehensively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch angles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for a better understanding of genetic and environmental effects on plant phenotypes.


Assuntos
Imageamento Tridimensional , Inflorescência/anatomia & histologia , Análise por Conglomerados , Análise Discriminante , Frutas/anatomia & histologia , Análise Multivariada , Filogenia , Vitis , Raios X
19.
Int J Radiat Biol ; 95(12): 1744-1751, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31486707

RESUMO

Purpose: Inflorescence architecture is an important trait in the seed production of grain legumes. As several genes are responsible for this trait, any mutation, on these genes, may cause change in the inflorescence architecture. This study was conducted to evaluate inflorescence architecture in faba bean exposed to gamma radiation and to characterize the inflorescence architecture mutants phenotypically.Materials and methods: Faba bean M2 seeds (4898) generated from M1 generation of cultivars Hassawi 2 and ILB4347 were used in this study. M1 seeds were produced by irradiation treatments at two doses of gamma radiations (25 and 50 Gy). Faba bean M2 seeds were planted under field conditions. A total of 4032 mutant plants out of 4898 M2 seeds were evaluated for their inflorescence architecture.Results: A total of 20 determinate mutants were found and classified into four different types. Determinate type 1 was characterized by the formation of single terminal inflorescence on shoot apical meristem (SAM), type 2 by the formation of multiple inflorescences on SEM and generated upper branches that act as indeterminate type. Type 3 was characterized by the formation of a panicle-like inflorescence. While type 4 was characterized by the formation of primary and secondary panicle-like inflorescence. All of the determinate mutant types had shorter plant height and earlier maturity than control indeterminate type but had lower biological yield and seed yield. Among the determinate mutant types, determinate type 1 was only mutant that had a higher harvest index than the control indeterminate type. This promising mutant can be used to further breeding program to increase biological yield and seed yield.Conclusions: This study indicated potential of gamma radiation in inducing novel inflorescence architecture in faba bean. The mutants developed are valuable resources to study genes related to inflorescence architecture through forward genetics approach.


Assuntos
Raios gama , Inflorescência/anatomia & histologia , Inflorescência/efeitos da radiação , Mutação , Vicia faba/genética , Vicia faba/efeitos da radiação , Fenótipo , Vicia faba/anatomia & histologia
20.
BMC Genomics ; 20(1): 658, 2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31419932

RESUMO

BACKGROUND: Inflorescence architecture is denoted by the spatial arrangement of various lateral branches and florets formed on them, which is shaped by a complex of regulators. Unveiling of the regulatory mechanisms underlying inflorescence architecture is pivotal for improving crop yield potential. Quinoa (Chenopodium quinoa Willd), a pseudo cereal originated from Andean region of South America, has been widely recognized as a functional super food due to its excellent nutritional elements. Increasing worldwide consumption of this crop urgently calls for its yield improvement. However, dissection of the regulatory networks underlying quinoa inflorescence patterning is lacking. RESULTS: In this study, we performed RNA-seq analysis on quinoa inflorescence samples collected from six developmental stages, yielding a total of 138.8 GB data. We screened 21,610 differentially expressed genes (DEGs) among all the stages through comparative analysis. Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to categorize the DEGs into ten different modules. Subsequently, we placed emphasis on investigating the modules associated with none branched and branched inflorescence samples. We manually refined the coexpression networks with stringent edge weight cutoffs, and generated core networks using transcription factors and key inflorescence architecture related genes as seed nodes. The core networks were visualized and analyzed by Cytoscape to obtain hub genes in each network. Our finding indicates that the specific occurrence of B3, TALE, WOX, LSH, LFY, GRAS, bHLH, EIL, DOF, G2-like and YABBY family members in early reproductive stage modules, and of TFL, ERF, bZIP, HD-ZIP, C2H2, LBD, NAC, C3H, Nin-like and FAR1 family members in late reproductive stage modules, as well as the several different MADS subfamily members identified in both stages may account for shaping quinoa inflorescence architecture. CONCLUSION: In this study we carried out comparative transcriptome analysis of six different stages quinoa inflorescences, and using WGCNA we obtained the most highly potential central hubs for shaping inflorescence. The data obtained from this study will enhance our understanding of the gene network regulating quinoa inflorescence architecture, as well will supply with valuable genetic resources for high-yield elite breeding in the future.


Assuntos
Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Chenopodium quinoa/anatomia & histologia , Chenopodium quinoa/metabolismo , Grão Comestível/genética , Redes Reguladoras de Genes/fisiologia , Inflorescência/anatomia & histologia , Inflorescência/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , RNA-Seq , América do Sul , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA